Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Water Res ; 227: 119342, 2022 Dec 01.
Статья в английский | MEDLINE | ID: covidwho-2106149

Реферат

Glutaraldehyde and didecyldimethylammonium bromide (GD) is a disinfectant widely used to prevent African swine fever (ASF) in livestock farms. However, the effect of residual GD on the activated sludge microbial ecology of receiving wastewater treatment plants (WWTPs) remains largely unknown. In this study, seven simulated systems were established to research the effects of GD on WWTPs and reveal the underlying mechanisms of microecological responses to GD at different concentrations. Both the nitrogen and carbon removal rates decreased with increasing GD concentrations, and nitrogen metabolism was inhibited more obviously, but the inhibition weakened with increasing stress duration. Microorganisms activated their SoxRS systems to promote ATP synthesis and electron transfer to support the hydrolysis and efflux of GD by producing a small number of ROS when exposed to GD at less than 1 mg/L. The overproduction of ROS led to a decrease of antioxidant and nitrogen removal enzyme activities, and upregulation of the porin gene increased the risk of GD entering the intracellular space upon exposure to GD at concentrations higher than 1 mg/L. Some denitrifiers survived via resistance and their basic capabilities of sugar metabolism and nitrogen assimilation. Notably, low concentrations of disinfectants could promote vertical and horizontal transfer of multiple resistance genes, especially aminoglycosides, among microorganisms, which might increase not only the adaptation capability of denitrifiers but also the risk to ecological systems. Therefore, the risks of disinfectants targeting ASF on ecology and health as well as the effects of disinfectant residuals from the COVID-19 epidemic should receive more attention.


Тема - темы
African Swine Fever , COVID-19 , Disinfectants , Water Purification , Swine , Animals , Sewage , Disinfectants/pharmacology , Glutaral/pharmacology , Livestock , Reactive Oxygen Species , Nitrogen
2.
ScientificWorldJournal ; 2021: 9342748, 2021.
Статья в английский | MEDLINE | ID: covidwho-1495720

Реферат

BACKGROUND: Recently, an outbreak of a novel human coronavirus SARS-CoV-2 has become a world health concern leading to severe respiratory tract infections in humans. Virus transmission occurs through person-to-person contact, respiratory droplets, and contaminated hands or surfaces. Accordingly, we aim at reviewing the literature on all information available about the persistence of coronaviruses, including human and animal coronaviruses, on inanimate surfaces and inactivation strategies with biocides employed for chemical and physical disinfection. METHOD: A comprehensive search was systematically conducted in main databases from 1998 to 2020 to identify various viral disinfectants associated with HCoV and methods for control and prevention of this newly emerged virus. RESULTS: The analysis of 62 studies shows that human coronaviruses such as severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV), canine coronavirus (CCV), transmissible gastroenteritis virus (TGEV), and mouse hepatitis virus (MHV) can be efficiently inactivated by physical and chemical disinfectants at different concentrations (70, 80, 85, and 95%) of 2-propanol (70 and 80%) in less than or equal to 60 s and 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Additionally, glutaraldehyde (0.5-2%), formaldehyde (0.7-1%), and povidone-iodine (0.1-0.75%) could readily inactivate coronaviruses. Moreover, dry heat at 56°C, ultraviolet light dose of 0.2 to 140 J/cm2, and gamma irradiation could effectively inactivate coronavirus. The WHO recommends the use of 0.1% sodium hypochlorite solution or an ethanol-based disinfectant with an ethanol concentration between 62% and 71%. CONCLUSION: The results of the present study can help researchers, policymakers, health decision makers, and people perceive and take the correct measures to control and prevent further transmission of COVID-19. Prevention and decontamination will be the main ways to stop the ongoing outbreak of COVID-19.


Тема - темы
COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , SARS-CoV-2 , Virus Inactivation/drug effects , 2-Propanol/pharmacology , Animals , COVID-19/virology , Coronavirus, Canine/drug effects , Disinfection/methods , Ethanol/pharmacology , Formaldehyde/pharmacology , Gamma Rays , Glutaral/pharmacology , Hot Temperature , Humans , Hydrogen Peroxide/pharmacology , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Murine hepatitis virus/drug effects , Povidone-Iodine/pharmacology , Severe acute respiratory syndrome-related coronavirus/drug effects , Sodium Hypochlorite/pharmacology , Transmissible gastroenteritis virus/drug effects , Ultraviolet Rays
3.
Bioessays ; 43(6): e2000312, 2021 06.
Статья в английский | MEDLINE | ID: covidwho-1184571

Реферат

Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.


Тема - темы
Disinfectants/pharmacology , Ketone Bodies/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Disinfectants/chemistry , Formaldehyde/chemistry , Formaldehyde/pharmacology , Glutaral/chemistry , Glutaral/pharmacology , Humans , Ketone Bodies/chemistry , Ketone Bodies/metabolism , Ketosis/etiology , Ketosis/virology , SARS-CoV-2/pathogenicity , Virion/drug effects , Virion/pathogenicity
Критерии поиска